Ionic liquid based EDLCs: influence of carbon porosity on electrochemical performance.

نویسندگان

  • Asa Noofeli
  • Peter J Hall
  • Anthony J R Rennie
چکیده

Electrochemical double layer capacitors (EDLCs) are a category of supercapacitors; devices that store charge at the interface between electrodes and an electrolyte. Currently available commercial devices have a limited operating potential that restricts their energy and power densities. Ionic liquids (ILs) are a promising alternative electrolyte as they generally exhibit greater electrochemical stabilities and lower volatility. This work investigates the electrochemical performance of EDLCs using ILs that combine the bis(trifluoromethanesulfonyl)imide anion with sulfonium and ammonium based cations. Different activated carbon materials were employed to also investigate the influence of varying pore size on electrochemical performance. Electrochemical impedance spectroscopy (EIS) and constant current cycling at different rates were used to assess resistance and specific capacitance. In general, greater specific capacitances and lower resistances were found with the sulfonium based ILs studied, and this was attributed to their smaller cation volume. Comparing electrochemical stabilities indicated that significantly higher operating potentials are possible with the ammonium based ILs. The marginally smaller sulfonium cation performed better with the carbon exhibiting the largest pore width, whereas peak performance of the larger sulfonium cation was associated with a narrower pore size. Considerable differences between the performance of the ammonium based ILs were observed and attributed to differences not only in cation size but also due to the inclusion of a methoxyethyl group. The improved performance of the ether bond containing IL was ascribed to electron donation from the oxygen atom influencing the charge density of the cation and facilitating cation-cation interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesoporous carbon capsules as electrode materials in electrochemical double layer capacitors.

The performance of mesoporous carbon capsules as electrode materials in electrochemical double layer capacitors (EDLCs) was evaluated in the presence of a variety of electrolytes, including room temperature ionic liquids (ILs).

متن کامل

Differential Capacity of the Double-Layer Formed at a Solid Electrode (Pt, Au)/Ionic Liquid Interface

Salts of low melting points, usually called ionic liquids (ILs), have been studied extensively during the last decade [1 – 3]. These liquid salts may serve as solvents for chemical reactions as well as electrolytes in electrochemical devices. The first extensively studied IL was 1-ethyl-3-methyl-imidazolium tetrachloroaluminate ([EMIm][AlCl4]). However such ionic liquids containing AlCl4− are e...

متن کامل

A Sensitive Electrochemical Sensor for Determination of Imipramine in Urine Sample Using Carbon Ionic Liquid Electrode Modified With Montomorillonite Nanoclay

We used an effective electrochemical sensor for the determination of imipramine at pH 7.2 using a carbon nanocomposite electrode. The electrode has been designed by incorporation of montmorillonite nanoclay into the carbon ionic liquid electrode. The high sensitivity of 1.714 μA (μM)-1, two linear calibration ranges of 0.1–2 μM and 2-40 μM, and detection limit of 19 nM were achieved. The relati...

متن کامل

Sensitive Voltammetric Detection of Indomethacin Using TiO2 Nanoparticle Modified Carbon Ionic Liquid Electrode

In this work, a TiO2 nanoparticle modified carbon ionic liquid electrode (CILE) was employed as a sensitive sensor for the investigation of the electrochemical behavior of indomethacin (IND). This nanocomposite sensor has been fabricated by incorporation of TiO2 nanoparticles and the ionic liquid 1-hexylpyridinium hexafluorophosphate (HPFP). The surface of the electrode was studied by scanning ...

متن کامل

Electrochemical Oxidation of Flavonoids and Interaction with DNA on the Surface of Supramolecular Ionic Liquid Grafted on Graphene Modified Glassy Carbon Electrode

The study of the interaction between DNA and small molecules such as drugs is one of the current general interest and importance. In this paper, the electrochemical investigation of the interaction between some flavonoids such as rutin, quercetin, and hesperidin with dsDNA on the surface of Supramolecular Ionic Liquid grafted on the Graphene Oxide Modified Glassy Carbon Electrode (</s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Faraday discussions

دوره 172  شماره 

صفحات  -

تاریخ انتشار 2014